CS 342302 Operating Systems
Fall Semester 2021
Prof. Pai H. Chou

[bookmark: _73l1l1z08aao]Weekly Review 8
(scope: Chapter 6-7: Synchronization)

[bookmark: _lcb703mvpghh]1.  Definitions and Short Answers
1. In the version of producer-consumer code that uses both in/out and count, race conditions could occur.

	// Producer
while (1) {
    nextItem = getItem();
    while (count==BUFSIZE) ;
    buffer[in] = nextItem;
    in = (in+1) % BUFSIZE;
    count++;
}
	// Consumer
while (1) {
    while(count==0) ;
    item = buffer[out];
    out = (out+1) % BUFSIZE;
    count--;
}


a. Give one example where one process's update is lost due to overwriting by the other process, assuming preemptive scheduling.
b. Explain how the race condition causes incorrect results.
c. Where can you convert into critical sections to eliminate the race condition?
2. What are the three requirements of a critical section?
3. Of the two software solutions to the critical section problem, why do they work, and what are their assumptions?
a. nonpreemptive scheduling
b. preemptive scheduling - using Peterson's Solution
4. If you perform nonpreemptive scheduling, can there be a race condition?  On a single-threaded uniprocessor?  On a multiprocessor?  Why or why not?
5. Consider Peterson' solution,
a. Does it need to temporarily disable interrupts in the critical section? 
b. Does it work on processors with two hardware threads?  With what kind of assumptions?  When can it fail when the assumptions don't hold?
6. What does a memory-barrier instruction do?  How can it be used as part of a synchronization primitive?
7. Why is it inefficient to disable interrupts on a multiprocessor?
8. When atomic test-and-set is called as a C function, does it return true or false when you successfully acquired the lock?  What is the lock value after?
9. How can atomic compare-and-swap be used to implement a lock?  What additional information can such a locking data type provide that is otherwise not available in atomic test-and-set?
10. Can an atomic variable replace a critical section in general?  In what case may it fail, if any?
11. How do you pronounce "Dijkstra"?
12. After declaring a semaphore S,
a. What does wait(S) do?  Under what condition would it block, and under what condition would it not block?  What is its effect on S's value upon returning?  What causes wait(S) to unblock?
b. What does signal(S) do?  Does it ever block?  If so, under what condition, or if not, why not?  What is its effect on S's value upon returning? 
13. What does the value of semaphore S represent when it is positive?  When it is negative?  When it is 0?
14. How can a mutex be implemented using a semaphore?
15. How can barrier synchronization be implemented using a semaphore?  If a process P1 needs to execute A before Process P2 executes B, how can the code of the two processes be written?  Explain how the waiting process can be unblocked even though the semaphore's value is initialized to 0.
16. Is it always more efficient to use non-busy-wait semaphores?  When is it more efficient to use busy-wait semaphores, if ever?
17. In the classical bounded-buffer problem of n-buffers, it declares three semaphores
    semaphore mutex = 1;
    semaphore full = 0;
    semaphore empty = n;
a. What is the purpose of the semaphore mutex?  What resource does it protect?
b. What is the purpose of the semaphore full?  
18. Continuing with the classical bounded-buffer problem, Producer's code looks like infinite loop with body:
 1    produce next item;
 2    wait(___);
 3    wait(___);
 4    enqueue next item;
 5    signal(___);
 6    signal(___);
Consumer's code looks like infinite loop with body
 7    wait(___);
 8    wait(___);
 9    dequene the next item;
10    signal(___);
11    signal(___);
Fill in the blanks above (lines 2, 3, 5, 6, 7, 8, 10, 11) with the proper semaphores.  Explain why they need to go in those places.
19. In the Readers-Writers classical synchronization problem, two semaphores rw_mutex and mutex are declared, in addition to an int readcount=0;
a. What is the purpose of semaphore rw_mutex;?  Why is it initialized to 1?
b. What is the purpose of the semaphore named mutex in the code?  Why is it initialized to 1 and use a separate int readcount = 0; instead of using a counting semaphore to keep track of the number of readers?
20. Continuing with the Readers-Writers classical synchronization problem, fill in the blanks below with the proper semaphores (rw_mutex, mutex):
 1  Writer():
 2      while (TRUE):
 3          wait(____)
 4          code for writing
 5          signal(___)
 6  Reader():
 7      while (TRUE):
 8          wait(___)
 9          readcount += 1
10      if (readcount == 1):
11         wait(___)
12      signal(___)
13      code to read data
14      wait(___)
15      readcount -= 1
16      if (readcount == 0):
17          signal(___)
18      signal(___)

21. In the Dining Philosophers problem, if the code for each philosopher is written as the following infinite loop that make use of an array of semaphores chopstick[5] = {1, 1, 1, 1, 1};
 1  do {
 2      wait(chopstick[i]); 
 3      wait(chopStick[(i + 1) % 5]); 
 4      eat rice;
 5       signal (chopstick[i]);  
 6      signal (chopstick[ (i + 1) % 5] ); 
 7      think;
 8  } while (TRUE);
a. Explain a situation where a deadlock can occur.
b. Explain a situation where a philosopher might starve.
c. What is the difference between deadlock and starvation?



[bookmark: _91dmtf19fuwc]2.  Programming Exercise: Parking Simulation
In this assignment, you are to implement a parking simulation program in Python using semaphores.

A parking lot is a good match with (counting) semaphores because it is a resource with multiple instances (i.e., N parking spots).  So, it will allow up to N simultaneous users to use the shared resources.  Any time the occupancy is less than N, there is no blocking; but if more than N, then some will have to block.

2.1 You will need several data structures for the parking lot:
· a counting semaphore for the number of parking spots
· a list to represent the spots (i.e., record which car is parked in which position)
· another synchronizing data structure of your choice when modifying the list of spots
Use the following template for making the parking lot data structure

import threading
def MakeParkingLot(N):
    global sem        # semaphore for the parking lot
    global spots      # list for the spots
    global spotsSync  # for synchronizing access to spots
    spots = [None for i in range(N)]
    #  your code to initialize sem and spotsSync 

You have several choices of data structures for spotsSync and spots.  You may even choose some alternative to spots instead of the code shown here, but if you use a plain list, then you would need something like a mutex, a lock, or another semaphore for spotsSync. Check out the available synchronization primitives from threading module.  What would you choose and why?

2.2  Each car can be represented by a thread.  In the next function, MakeCars(C), create C threads and return a list of them.

def MakeCars(C):
     # your code here to spawn threads
     # don’t forget to return the list

2.3 Next, write the function to be attached to each thread, i.e., the action of parking the car, leaving it there for some time, and leaving.  it will make use of the same global data structures declared earlier.  Use the comments in the following template code to fill in the necessary statements.

def Park(car):
    global sem, spots, spotsSync
    # 2.3.1  ############################
    # if spot available, grab it; otherwise wait until available.
    #  Hint: don’t use if/else statement!  this is just one line.
    # 2.3.2 ###########################################
    # after confirming one parking spot, modify the spots 
    # (Python list or your choice of list-like data structure to
    # put this car into the spot.  The following is an example
    # of what it can do, but you may have a different way of
    # grabbing parking spots.
    # Do you need to protect access to the following block of
    # code? If so, add code to protect it; if not, why not?
       for i in range(len(spots)):
          if spots[i] is None:
            spots[i] = car
            break
       snapshot = spots[:]  # make a copy for printing
    # now let us print out the current occupancy
    print("Car %d got spot: %s" % (car, snapshot))
    # leave the car on the lot for some (real) time!
    import time
    import random
    st = random.randrange(1,10)
    time.sleep(st)
    # now ready to exit the parking lot.  What do we need to 
    # 2.3.3 ################################
    # update the spots data structure by replacing the spot 
    #    that current car occupies with the value None; 
    #    protect code if needed
    # (2) print out the status of the spots
    print("Car %d left after %d sec, %s" % 
         (car, st, myCopySpots))
    # 2.3.4 #################################
    # (3) give the spot back to the pool 
    # (hint: semaphore operation)

# Finally, have the main program run it:
if __name__ == '__main__':
    MakeParkingLot(5)
    cars = MakeCars(15)
    for i in range(15): cars[i].start()

Here is sample output.  Your output may be in a different order, but it must be consistent.

$ python3 parking.py
Car 0 got spot: [0, None, None, None, None]
Car 1 got spot: [0, 1, None, None, None]
Car 2 got spot: [0, 1, 2, None, None]
Car 3 got spot: [0, 1, 2, 3, None]
Car 4 got spot: [0, 1, 2, 3, 4]
Car 0 left after 3 sec, [None, 1, 2, 3, 4]
Car 5 got spot: [5, 1, 2, 3, 4]
Car 2 left after 3 sec, [5, 1, None, 3, 4]
Car 6 got spot: [5, 1, 6, 3, 4]
Car 3 left after 4 sec, [5, 1, 6, None, 4]
Car 7 got spot: [5, 1, 6, 7, 4]
Car 6 left after 1 sec, [5, 1, None, 7, 4]
Car 8 got spot: [5, 1, 8, 7, 4]
Car 5 left after 3 sec, [None, 1, 8, 7, 4]
Car 9 got spot: [9, 1, 8, 7, 4]
Car 1 left after 8 sec, [9, None, 8, 7, 4]
Car 4 left after 8 sec, [9, None, 8, 7, None]
Car 10 got spot: [9, 10, 8, 7, None]
Car 11 got spot: [9, 10, 8, 7, 11]
Car 10 left after 3 sec, [9, None, 8, 7, 11]
Car 12 got spot: [9, 12, 8, 7, 11]
Car 7 left after 7 sec, [9, 12, 8, None, 11]
Car 13 got spot: [9, 12, 8, 13, 11]
Car 11 left after 5 sec, [9, 12, 8, 13, None]
Car 14 got spot: [9, 12, 8, 13, 14]
Car 8 left after 9 sec, [9, 12, None, 13, 14]
Car 9 left after 9 sec, [None, 12, None, 13, 14]
Car 13 left after 6 sec, [None, 12, None, None, 14]
Car 14 left after 6 sec, [None, 12, None, None, None]
Car 12 left after 9 sec, [None, None, None, None, None]

2.4  Show your typescript. Run your code multiple times. Does it show the same or different output?  Why?


